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I

I. Introduction

Proper operating of the satellite-based Global Positioning System (GPS) im-

poses increasingly demanding requirements on global clock synchronization. Such

synchronization account for both special relativistic effects and the effects caused

by the earth's gravitational field. A consistent treatment of both kinds of effects

can be performed only within the framework of general relativity.

My original involvement in the researcl on relativistic effects in GPS, in the

summer 1988, was related to some apparent confusion concerning the formulation

of the global clock synchronization problem. Using the 4-dimensional geometric ap-

proach in a systematic fashion I pinpointed the source of the confusion and resolved

the question once for all.

The 4-Geodesy Section (and, later the Spacetime Physics Group) of the Ad-

vanced Concept Branch of the USAF Weapons Laboratory at Kirtland Air Force

Base recognized that general relativistic approach and the use of the 4-geometry

language was a necessity in formulating and solving the GPS problems.

Furthermore, the idea of the satellite based Spacetime Common Grid was sug-

gested as a means to formulate the CPS problems in a proper general relativistic

fashion. The need in a 4-geometric mathematical formulation of the Spacetime

Common Grid idea was recognized.

My research interests have been in the area of applications of modern mathe-

matical methods in classical and quantum gravity. I have a very strong background

in general relativity, both in foundational aspects and in applications. I owe it to

the University of Texas at Austin (where I received my Ph. D. degree), and, in par-

ticular, to Prof. John A. Wheeler (with whom I worked for more than four years).

My particular strength is the ability to see clearly the geometric content of general

relativistic problems. This geometric insight played a key role in performing this

reseaich.



11. Objectives of the Research Effort

The requirements on global clock synchronization are becoming increasingly

demanding in GPS operations, Furthermore, when more satellites are added to

the GPS constellation to form a spacetime common grid (especially with cross-

link ranging between satellites), it is believed that the precision requirements will

become crucial for the coherent functioning of the system as a whole.

The GPS constellation will scmeday contain 24 clocks (with 3 active spares)

moving with respect to each other. The GPS satellites will have almost circular or-

bits of 4 earth radii, with 12-hour periods, which means that the satellite velocity

will be - 8 times the velocity of the surface station observer originating from. earth

rotation. Therefore, the required precision of the clocks synchronization necessitates

taking into account special relativistic effects on the rate of the clocks. In addition,

all of the activity of the GPS constellation occurs in the earth's gravitational field

with clocks placed in positions with different gravitational potentials. The gravita-

tional influence of the field on a clock's rate is determined by the parameter Ms

which produces an effect of the same order of magnitude as the second order special

relativistic effects. A consistent treatment of both effects together can be done only

within the framework of general relativity.

The need for a general relativistic treatment of the GPS clock synchronization

problem was recognized prior to the summer 19881 and stressed agaiii during that

summer 2 . Investigation of the general relativistic effects on clock rates was per-

formed on several occasions"6 . The results have been implemented partially into

the ranging procedure. However, by the summer 1988 the matter became a subject

of controversy 3,4,5' 6 and confutlion. Although the results of the most of researchers

indicated that the treatment of the clock rates implemented in the GPS xas correct,

the source of the confusion was not clearly pinpointed.

Working within the 1988 Air Force Summer Faculty Research Program (May

2



- July, 1988) I used the covariant technique of the tensor series expansion (1) to

find the correcL general relativistic expression for the Doppler shift in the earth's

gravity field up to the second order and to give the results physical interpretation,

and (2) to formulate and solve the problem of global clock synchronization in the

earth's gravitational field.

In my work, I utilized maximally the 4-geometric language in formulating the

problems and pictorial demonstrations of the problems peculiarities, having as a

goal to avoid confusion in interpretation of the results in the future. This allowed

me to pinpoint the source of the confusion and to resolve the problem once for all,

The analysis performed by mc during the 1988 Air Force Summer Faculty

Research Program (cf. my 1988 SFRP Final Report17 ) was done only for the

simplest cases. For instance, I restricted my analysis to the case of circular orbits

when comparing the rates of the clock of the ground observer and the satellite clock,

and to the case the equatorial ground observer and equatorial plane of the satellite

orbit when considering the initial clock synchronization (in mathematical language,

when evaluating the constants of integration). The simplifications were necessary

to stress the physics of the problems and to get rid of the details that did not have

the relativistic origin. They allowed me to achieve a clear understanding of the key

relativistic features involved in GPS time transfer.

The main results of the 1988 SFRP1" research are used extensively in sections

III, and IV of this report. Section V analyses a misconception that lead to the

controversy mentioned above.

It is worth mentioning here that there was at least one more occasion when

a confusion occurred due to neglecting the basic geometric interpretation of the

problem. It was associated to the Sagnac effect which was considered for a while

in sonic GPS related discussions10 as a separate one from the ordinary general

relativistic time dialation. If this point of view was accepted, a part of the second

order relativistic correction would be counted twice over. The geometric analysis of

3



this phenomena can be found in section VI of this report.

It so happened that amidst the controversy of 1988 the question of evaluat-

ing the constants of integration in the timc transfer iclations was put forward by

H. Fligel of the Aerospace Corporation. The question turned out to be not related

in any way to the controversy. It concerned much deeper issues, such as the initial

clock synchronization and evaluating the GPS time transfer and the ranging proce-

dure errors. A discussion of this problem can be found in section IV and X of this

report.

A part of my objectives for the research efforts within the URRP were dictated

by the necessity to learn how the basic relativistic effects described previously in

the simplest situations look in more realistic setting:

(1) Although the orbits of the GPS satellites ideally should be circular, it is

clear that they cannot be perfectly circular, Consequently, the question is

how the expressions comparing the rates of clocks must be modified if the

orbits are slightly noncircular (if they indeed should be modified).

(2) The initial clock synchronization procedure was considered by us previ-

ously for the highly idealized case of the equatorially placed grouad ob-

server and equatorial satellite orbits. It was shown that the procedure

allowed to initially set the clocks in such a way that the constant of in-

tegration in the formula relating the ground observer and the srgtellite

clock time became equal to zero with a nonaccumulating error of the or-

der of M®/r (cf, section IV of this report). However the GPS satellite

orbits planes are inclined with respect to the equatorial plane. Also, the

ground observer ethalon clock is not placed on the equator. The question

is whether the initial synchronization procedure can be made to work with

the same precision in this more realistic setting.

(3) The basic relation between the range data and time data standardly used

4



in GPS is the special relativistic expression

dAB = C(tB - tA),

where c is the speed of light, or, in the system of units with c - 1 (com-

monly accepted in relativity 8,9.37)

dAB = tB - tA

Here A and B are two events in spacetime related by a light signal (or, in

mathematical language, connected by a null geodesic), dAB is the range

between A and B, and t A, tB are the times of events A and B, respectively.

The range dAB and the times tA, ty in special relativity are measured in

the frame of the same (but arbitrary) global inertial observer, or, to put it

in different language, in the same global orthonormal coordinate system in

spacetime. Neither the concept of a global inertial frame nor the concept

of a global orthonormal coordinate system makes sense in curved space-

time for the general gravitational field. This makes the interpretation of

the range-time-data relation ambiguous in the general situation. How-

ever in the case of the weak, static, spherically symmetric gravitational

field (which is the case in all GPS problems) one might hope to find a

global interpretation of the relation. The relation then will become an ap-

proximate one, and the question is whether it can be kept precise enough

to meet the requirements of the GPS.

(4) The approximations used in the relativistic treatment of the GPS leave

the residual errors of higher order in the procedures of the time transfer

and of the ranging. Some errors accumulate with timc, others do not. It

is very important to be able to estimate these errors and, for the errors

accumulating with time, to find out how long can the system function

without special mnaintemmnce to support a given level of precision (say,



a

1 ns). The latter question becomes especially important if the goal of

making the GPS autonomous is considered.

(5) The history of the GPS and of the relativistic effects treatment in it demon-

strates clearly a need for a general relativistic language describing function-

ing of the GPS and its possible modifications. The idea of the Spacetime

Common Grid suggests such a language. It expresses all the GPS proce-

dures in terms of the clock readings and propagating light (radio) signals,

To make the Spacetime Common Grid language precise it is necessary to

give its mathematical formulation in terms of 4-geometry. It is relatively

straightforward to express all elementary procedures of the GPS in the lan-

guage of the timelike curves lengths and null geodesics in 4-dimensional

spacetime. It is putting all the measurements in agreement (globalization)

that presents a problem. It cannot be done in relativity in general case.

Only the symmetries of the gravitational field can enable one to achieve

such a globalization. One of the goals of this research was to outline a

complete mathematical formulation of the Spacetime Common Grid on

the levels of both elementary operations and functioning of the system as

a whole.

(6) Even if the idea of the Spacetime Common Grid is formulated mathemati-

cally and applied to the problems of global positioning its geometric clarity

and simplicity can be lost if inadequate computational techniques are used

to solve the GPS problems. It is necessary, consequently, to evaluate differ-

ent mathematical formalisms to find the one that is the most appropriate

to keep the ideas of the Spacetime Common Grid clear in applications. The

geometric description of the Spacetime Common Grid together with such

an adequate mathematical machinery for solving both local and global

GPS problems will provide a complete covariant description of the GPS.

In sections VII--X we analyze systematically the relativity produced errors in

6



ranging. Our results provide a firm theoretical basis for making estimates of the

accuracy of the existing GPS procedures as well as evaluating any future changes

inl it.

It should be noted that the report does not provide a complete and fully re-

alistic picture of the global time transfer and global positioning. Some practcally

important points have been omitted. For instance, the fact that the reference clocks

are on geoid as well as the contribution of the earth's quadrupole moment are not

discussed. One can be referred to an excellent report by N. Ashby23 for such a dis-

cussion, These effects could be included but the way it stands at present time the

techniques that are used in our report do not seem to provide essential advantages

over the techniques used by N. Ashby,

In section XI we give an outline of a complete geometric description of the

Spacetime Common Grid and evaluate two different techniques as candidates one

of which (or some combination of both) can be used as a computational tool in a

complete theory of Spacetime Common Grid.



III. Doppler Shift in a Schwarzschild Field.

We use the Schwarzschild geometry as the model of the earth's gravitational

field. In doing, so we neglect contribution of the earth rotation in the gravitational

field. An enhanced model wooul'd involve the Kerr metric. However, the evaluation

of the Kerr model parameters shows that the produced effect of the inertial frames

dragging would be of higher order than the effects caused by the parameters com-

ing from the Schwarzschild model7 . Meanwhile, the estimate of the Schwarzschild

model parameters showF that the effect of M®/r (here M® is the earth mass ani

r is the Schwarzschild radial coordinate8' 9 ) is of the same order as effects of the

squares of the relevant velocities. This is obvious for the satellite orbits. Indeed,

th. Kepler's law for circular orbits (and it is well known that the Kepler's law is

satisfied exactly for circular orbits even in general relativity& when expressed in

Schwarzschild coordinates) reads Mg = v2 r so that M(/r = v2. For the ground

observer v2 is less than M®/r. Nevertheless, for all the situations considered in

GPS one can consider that v2 - M1/r.

Thus, to discuss Doppler shift up to the second order, we can use Schwarzschild

geometry as a model of the earth's gravitational field and, provided that in all

approximations terms proportional to Mco/r are retained (we can neglect higher

powers of M®/r), we obtain a saisfactory expression for the Doppler correction up

to the second order with respect to the velocities involved in the picture. We can

also say that all the relations below are satisfied up to the second order with respect

to t, or \I'•'r. In general, throughout this report the abbreviated expression "the

relation is satisfied up to the nth order" means that it is satisfied up to the nth order

in v and /M---/r.

The Schwarzschild geometry is a static spherically symmetric geometry. Its

metric in Schwarzschild coordinates is given by the expression8

ds=2 (1 - k r ) dr2 + r2 (d02 + sinOdO2 ) , (1)8r

8



where t, r, 8, and 4 are Schwarzschild coordinates*, and M& is the mass of the

earth.

In the geometric picture (cf. Fig. 1) describing the Doppler shift of an electro-

magnetic signal sent from the transmitting satellite to the surface station observer,

the free falling satellite has a &,-odesic world line, whereas the observer, being at-

tached to the earth, has a world line with all three of the curvatures nonzero9 , A

Dopplea shift arises since the 4-velocity of the satellite (at the moment of signal

transmission) and the observer (at the moment of receiving) are not parallel. More

precisely, the result of the parallel transport of the satellite 4-velocity along the

null geodesic connecting the event of transmitting and the event of receiving does

not coincide with the 4-velocity of the observer.

The frequency shift can be expressed in terms of the 4-velocities of the satellite

and the observer and the 4-momentum of the photon traveling from the satellite to

the observer

V = us -s= - 0VAj (2)

where V", V1 are the 4-velocities of the satellite and the observer and sP,,, op1,

are the photon 4-momentum at the event of transmitting and the event of receiving,

respectively. The 4-momentum of the photon is parallel transported alonL 'he null

geodesic connecting the events of transmitting and receiving and is tangent to the

null geodesic at all times.

We have used for calculation of the Doppler shift (up to the second order)

the technique of the tensor series expansion of the world function' developed by

J. L. Synge. Here we only describe and explain the result. Following J. L. Synge we

introduce new coordinates (XP)p=0,i,2, 3 related to the Schwarzschild coordinates as

* We use throughout this report the system of units commonly accepted in gen-

eral relativity with both the velocity of light and the gravitational constant equal

to unity

9



S~Vs

vo vs
PO,

PS

WORLD LINE OF WORLD LINE OF
OBSERVER SATELLITE

Fig. 1. Geometry of the Doppler shift. The vector Va1 is the result of the parallel transport

of Vs along the null geodesic PsPIo. The Doppler shift is caused by Vo 0 VS".
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follows

x=t, xz =r sin0cosd, x 2 =rsin0sin¢, x3 =rcos0. (3)

The metric tensor in these coordinates can be expressed as the sum g=v - qPY +

"y,u, where ?7, -= diag(-1, 1,1, 1) and yj, are small and static (7,0,,o - 0). The

coordinates (x4) are very convenient for a pictorial representation of the Doppler

shift. In Fig. 2 these coordinates are used as coordinates of a Euclidean space.

Of course, in this space the geodesics of the original Schwarzschild space do not

always look like straight lines. The world line of the satellite in this picture is

geodesic but looks curved. The vertical straight lines are the integral lines of the

timelike Killing vector field of the Schwarzschild metric (described by the equations

Xi = const, i = 1,2,3). The satellite and the observer are moving with respect to

Schwarzschild coordinates, so that the 4-velocities VS, Vo are not parallel to the

Killing vectors - = . The angles between Vs, Vo and the Killing vectors &08

(directed upward) are different and determined by the satellite and the observer

orbital velocities. If the satellite and the observer were at rest with respect to

Schwarzschild coordinates (in which case their world lines would be pictured as

vertical straight lines), we would get for the Doppler shift

!ýo = M• M(4)
Rs Ro

The right hand side of Eqn. (4) is often called the gravitational Doppler shift. It is

of second order in magnitude and should be expected to appear as one of the terms

in the final result.

In fact, the final result for the Doppler shift up to the second order is

At At At V (5)D= -s-••+(Vo-Vi)' Vsk--§"+ .s 2o 2 s V

where i,k = 1,2,3, Axi = Xr o - 4, At = - A , and the summation over

repeating indices is assumed.

11



INTEGRA~L LINES OF
THE TIMELIKE KILLING

zo VECTOR FIELD-

Qo

SCHWARZS CHILD.
TIME OF ---- -

TRANSMITTING PO P

WORLD LINE OF WORLD LINE OF
OBSERVER SATELLITE

Fig. 2. The Doppler shift and 'Its main contributing factors asi viewed by observers resting
with respect to the Scihwarzschild coordinates.
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The first two terms in this expression are the first order Doppler shift and the

second order correction to the first order term (note that the second term is not

symmetric with respect to Vo, Vs; it is related to the nonsymmetry of expression

(2) with respect to vo, vs). The third term is the gravitational Doppler shift (cf,

Eqn. (4)). The physical origin of the last term is the motion of the satellite and the

observer with respect to Schwarzschild coordinates.

We want to point out that in the case of circular orbits only the first two terms

contain information about time delay between transmitting and receiving, and only

these two terms are time dependent.

13



IV. Global Clock Synchronization in Schwarzschild Field.

The relation betweea the clock rates and the Doppler shift is established ,g via

the relation (cf. Fig. 3)

T Vs - VO _ p -l d_ , (6)

VS VS dT0

or

des = (1 - V)drc, (7)

However, a closer look at this formula and at Fig. 3 makes it obvious that the

infinitesimal interval of the satellite and the observer proper times (drs, dro) are

measured at different Schwarzschild times. A more precise form of (7) would be

(drs)t, = (1 - P)(dro)t,, (8)

where tt and t, are the Schwarzschild times of transmission and reception of the

signal. The retardation of tr compared to tt is reflected in Eqn. (5) by the structure

of the first order term and the second order correction to the first order term. This

circumstance % as obviously the prime concern of H. Fligel of Aerospace Corpora-

tion.

The procedure, described above, of comparing the proper time rates of two

clocks in general relativity is the only one (up to equivalence) that is correct for

arbitrary gravitational fields. However, generally speaking, it will work only for

two clocks (and under some reasonable conditions). In a general gravitational field

(with no symmetries) it will not provide global synchronization for more than two

clocks. It is not a drawback of this particular procedure. It is well known that

in general relativity global synchronization of clocks in gravitational field with no

symmetries is impossible in principle.

However, our model gravitational field of the earth (Schwarzschild field) is very

symmetric (static, spherically symmetric). One can convince himself easily that in

14



dro

tr

drs

WORLD LINE OF WORLD LINE OF
OBSERVER SATELLITE

Fig. 3, Relation between the Doppler shift and the rates of the moving clocks. Shown is the
set of null geodesics joining the world lines of the satellite and the observer, Each geodesic
represents a wave crest. If there are n su6 crests and drs, dro are the clock-measures of
P.sQ5 and PoQo respectively, then n = Psdrs = v0 dro
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this particular case our procedure will do the job, But so will many others. The

task is to find the simplest one. For instance, one would like to minimize the par-

ticipation in the procedure of time dependent contributions like the first two terms

of Eqn. (5). It would be a good idea to make all the clocks to display Svhwarzschild

coordinate time, i. e. the time of an observer placed at spatial infinity and resting

with respect to the Schwarzschild coordinates. Schwarzschild coordinate time is the

closest possible analog of the time of the ECI frame (the special relativistic limit of

the Schwarzschild coordinate frame coincides with the ECI frame).

The first step in this direction is to compare the rates of the clocks of the

satellite and the observer with Schwarzschild clocks simultaneously with respect to

Schwarzschild time (cf. Fig. 4). Elementary calculations show that up to the second

order

(drs) = ( Rs ) () - v.) ' dt (9)

(dr,), = (1 • ( - VJJ)' dt (10)

whereVO.L. (Vs.±) is the component of the observer's (satellite's) 4-velocity Vo (Vs)

orthogonal to the timelike Killing vector field of the Schwarzschild metric.

We will perform the rest of our calculation in this section in a highly idealized

fashion. Namely, we assume that RO, VC2,., Rs, VS._L are constant (tho purpose of

this idealization is to get rid of all the details of nonrelativistic origin). In this case

both dv0 and drs are proportional to dt with constant proportionality coefficients.

Thus one can take any of them as fundamental (the different choices are equivalent

to the different choices of time units). Dividing (9) by (10), we obtain

(0 - e)' (1-V ) (11)

or, in the usual second order approximation,

(drM) - ("0 0 M.) - Vc_±)] (dro (12)
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t r(+ ~+)

dt dro drs

t=O Tro O Ro R$ rs =O r

WORLD LINE OF WORLD LINE OF

OBSERVER SATELLITE
At ( Rs -Ro) + 2MO In Rso- 2MO

.. o .. ... ,, ,. - M

Fig., 4. The relation between the satellite and the observer clock rates in a Schwamsx'child

simultaneity band and the initial clock synchronization procedure.
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which is interesting to compare with Eqn. (5) (note the loss of the terms related to

the time delay).

Integration of Eqn, (12) yields

745 = o+C (13),' -1 - I \ Ro 2 (1.- , ,(a

The constant of integration C can be made equal to zero by employing an

appropriate choice of the origin for To, rs. In this section we show one way to do

it for the particular case when the observer is placed on equator, the plane of the

satellite orbit is equatorial, and the orbit period is shorter than the pcriod of the

earth rotation. The general case is considered in section IX.

Let us suppose now that the ground observer is sending messages of his clock

time continuously in the upward direction (we assume here that the aberration

problem is properly taken care of), so that the satellite receiver knows that the

signals are propagated along the radial null geodesics. For such signals expression

(1) for the Schwarzschild metric implies (with ds 2 = 0, dO = do = 0)

dt= 1 - A dr. (14)

Integrating (14) we come up with the expression for the Schwarzschild travel time

of the signal

At = Rs - Ro + 2 MO In Rs - 2M(

Thus, if the satellite receives the ground station message sent at rTI fo and, at

the moment of receiving, sets on its clock time to

LO -- VL Me4. Y fo 6t(16)

then the event on the world line of the satellite at rs = 0 and on the world line of

the observer at ro = 0 become simultaneous with respect to Schwarzschild time,

and, if we choose as t 0 the Schwarzschild time hypersurface passing through
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both events, then at any Schwarzschild moment of time t the clock of the observer

and the satellite will display

ro = 0 (17)

and
7'6 = (I M®R L Y• t, (18)

making it possible to tell Schwarzschild time by looking at any of the clocks,

The constant C in Eqn. (13) thus becomes equal to zero, It is clear that

the described procedure allows one to synchronize as many clocks as he wishes to

Schwarzschild time and the procedure can be generalized to any placement of the

observer on the earth and any satellite orbit inclination. In so doing, one might

expect the expression for At to become more complicated.

Therefore, it is worth to take another look of the Eqn. (15) and to evaluate

the last term in it since this term is the one that has a tendency to become more

complicated. Let us rewrite Eqn. (15) as follows

At = RS - RO + KRO (19)

where
K = 2M& (ln R'S In 1- 2M®/Rs) (20)

R- " • 1 -I12M®/Ro

Using the Maclaurin series expansion and dropping all the powers of M®/r higher

than the first, we estimate (20) as follows

2 (R 2M® 2M & 2M®Ins (21)

R-k R- RS Ro ] I Ro

Taking into account that for the GPS satellites Rs - 2Ro, and using the values of

M® and Ro, we come up with K 10-'. This means that if we replace the exact

expression (19) for an approximate one

At ý- Rj - Ro (22)
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we introduce an error in ranging of the order of 1 cm (more precisely, 0.08 ns).

The error is introduced in the constant of integration and, consequently, does not

accumulate. It is clear, therefore, that for any practical purpose we can neglect the

last term and use the approximate range-time-data relation (22) instead of exact

equation (19).

It is interesting to note here that Eqn. (22) can be also written as

At = Ar(1 + 0 2) (23)

This gives us a hint that the range- data relation might admit the general relaLivistic

interpretation and that it is satisfied only up to the first order. This subject will be

developed in a general context and in more detail in section VIII.

However, we can make a conjecture that, most probably, the initial synclhroniza-

tion procedure can use the special relativistic range-time data relation in present-

day GPS. The conjecture, as any conjecture, is formulated in a rather vague fashion,

We will turn it into a precise statement in subsequent sections.
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V. Geometric Approach and the "Relativity of Simultaneity".

As it is we.ll known"') the geometric approach is a key feature of nioderil rel-

ativity and its applications, This approach helps one to see clearly the physics of

rclativist'c procedutes at all steps of calculations and, typ"cally, it considerably re-

duces the amount of calculations necessary to describe relativistic effects, We are

going to demonutrate the power of the approach by analyzing the proposal to change

the relativistic treatment of the GPS time transfer by means of the "taking into

account" of the so-called "relativity of simultaneity"6 (we will use the abbreviated

expression "RS--proposal" for it in the rest of the discussion). This proposal led to

an incredible waste of time and effort of the researchers in 1987-1988. It was based

heavily on the special relativistic concept of simultaneity with respect to tin inertial

frame of reference applied mistakenly to non-inertial frames. This concept has no

analogues in general relativity, The techniques of calculations used in this approarcl

was that of the pre.-Mirkowski epoch thus leading to many pages of calculations

and creating ample opportunity for producing mistakes,

The geometry of the RS-proposal, as we show below, is primitive. If the

geometric approach had been used, the main results of the RS-proposal6 could

have been obtained in two lines (cf. Eqns. (29)-(30) below), together with a clear

physical interpretation of what actually had been done,

To compare the general relativistic calculations of section IV with the special

relativistic calculations of the RS--proposal we consider the case M& = 0 in the

equations of section IV. This means that we neglect the gravitational correction.

Thus the Schwarzschild frame transforms into the ECI frame, Therefore,

At = Rs - Ro, (24)

d'rc, = (1 - 6 (25)

and
Ctrs = (1 - (26)
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(we have replaced V± of section IV for P; V± and V coincide up to the second

order). Let us try to reconstruct now the geometry of the RS-proposal. It can be

expressed as follows

The RS-proposal suggests that we compare the intervals of proper times drs

and d-ro simultaaeous in the frame of the observer (cf. Fig. 5),

do = -(Vo ' Vs)dTs, (27)

where the components of the 4-velocities Vo and VS, as represented in the ECI

frame basis, are given by (up to the second order),

Here V0 and 'Vs are the 3-velocities of the observer and the satellite, respectively,

in the EC1 frame. Substituting (28) into (27) we obtain (up to the second order),

(dro) 2 = - - - V' ) (ds)t, (29)

or, otherwise,

(drs),, = 1- V + V2) + 's (dro),. (30)

It is instructive to look now at the geometry of the RS-proposal. What happens

is that we are using for the ordering in time the alleged slicing of spacetime by the

family of proper spaces of the observer, i. e. by planes -ro = const, instead of the

slicing by proper spaces of ECI frame. But the family of the proper spaces of the

observer does not provide a slicing (cf. Fig. 6). These proper spaces intersect each

other. As a result, the global synchronization has not been achieved (and cannot

be achieved) in this way. Also, one should notice that VO and Vs are not measaired

at the same moment of Schwarzsdiild time, so that the scalar product in equations

(29) and (30) actually should be written as (Vo). 2 (Vs)t, (one should perform
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t

V0,

VS

t2 d7- -- ' PROPER
dT5 SPACES

PROPER SPACE
OF OBýSERVER

x

WORLD LINE OF WORLD LINE OF
OBSERVER SATELLITE

Fig. .5. The geometry of the "relativity of simultaneity" proposal. The intervals of the
satellite and the observer proper time are compared not in the Schwa~rzschild simiulta~neity
band but rather in the simultaneity band of the instantaneous comoving.Trarne of the
observer. Such a construction cannot be defined in curved spacetime.
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VVT 2

V7

jTT

WORLD LINE OF
OBSERVER

Fig. 6. Even in special relativity proper spaces of the instantaneous comoving frame of
the observer are not capable of supporting global synchronization. Acceleration of the
observer causes the proper spaces of the instantaneous comoving frames of the observer
corresponding to two different moments of time to intersect each other. The simultaneity
bands are not well defined in this approach.
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similar corrections in other terms; however, in the case of circular orbits 3 and VJ

are constant, which implies (2)'. = (172)g and (N)£ (V;) ).0i 12 ( S t2

Expressions (29) and (30) are not useful for comparing proper times rT and 'rs

with the ECI frame time t. Even if we decided to do so (in a close neighborhood of

the observer world line), it would require taking into account (consisting of bulky

calculations) the difference between t, and t 2 at each moment when integrating,

and not just for The initial synchronization.

The equations themselves are correct. Nevertheless, they have nothing to do

with synchronization. One can use them (close to the observer world line) if one

finds out the relation between dt1 and dt2, which is not hard to du. The result is,

dt2 = [o.- t (1 - -J -I dtl, (31)

which, when used together with Eqns. (29)-(30), gives

(d~rs)t1 - .(drc,)i =( ( - )(dro hi. (32)

This is identical to the analysis presented in section IV. The difficulties of the RS-

proposal are related mainly to the missing piece of information, namely (cf. Fig. 7),

dt1 0 dt 2 # dt3. (33)

Otherwise, this analysis would work as well as any other correct procedure, although

it is not clear why one should put himself through all of this to get simple results. Of

course, it wipes out the effect of the cross-term (the key result of the RS-approach).
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V0

dt3 ,. "-(dro)t ,S

dq .. . . . . . .. (rst,

WORLD LINE OF WORLD LINE OF
OBSERVER SATELLITE

Fig. 7. The time intervals dti, dt2 , and dt3 arenot equal. After taking into account

the correct relation between them, we come up with the clock synchronization scheme

equivalent to the synchronization in the Schwarzschild coordinate system.
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VI. Sagnac Effect.

In section V we have demonstrated the power of the geometric approach in

analyzing a manifestly erroneous proposal and uncovering the source of the error in

it.

In this section we are going to consider the so-called Sagnac effect. There was a

tendency for a while, even in serious discussions10 related to the Global Positioning,

to treat this effect as something additional to the basic relativistic time dilation

effect. Such a treatment of the Sagnac effect is, at least, misleading, and if a proper

care is not taken, might lead to the wrong account of relativistic corrections in the

global time transfer. We are going to analyze this effect from the geometric point

of view and demonstrate that, as a matter of fact, it represents a mere special case

of the ordinary relativistic time dilation.

To simplify our discussion we consider the Sagnac effect in special relativity.

Let us introduce an inertial frame of reference and the global Lorentz coordinate

system associated to it If an observer A is at rest with respect- to this frame then

his proper time coincides with the coordinate time of the described above Lorentz

coordinate system.

"TA = t (34)

Let us consider now another observer B moving around the center of the Lorentz

coordinate system at a speed V along a circle of radius r, The time to complete

the full circle with respect to the observer A is

2'rrt = rA - V (35)

(we can think of the observer A as sitting at rest with respect to the inertial frame

at some point of the orbit of the observer B).

The interval of proper time of the observer B corresponding to the completion
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of the full circle is (up to the second order)

7B = t - Yr2) (36)

The difference between the readings of the clocks of those two observers upon

the completion of the full circle will be

rA - r= t - t (I -L =rrV (37)

Let us suppose now that the observer A is not at rest with respect to the

original inertial frame but, instead, is moving along the same circle as the observer

B so that the angular velocity of this motion is w. We choose the sign of w in such

a way that w > 0 if A and B are moving in the same direction , and w < 0 if they

are moving in opposite directions. The interval of coordinate time necessary for B

to complete the circle with respect to the observer A is now

2'rr (38)

tV w

The interval of proper time of observer B corresponding to i is

=B t( 1 _ y (39)

and of observer A corresponding to {

fA - 2 ( 40)

The difference between the readings of the clocks of those two observers upon

the completion of the full circle (as registered by the observer A will be

TA - 7B = 2 r2 ) = (V +wr)(V- wr) (41)

which, after substitution of the expression (38) for 1 and slight transformations,

yields

TA -- 7 = (7A - rB) + Aw (42)
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where

A = 7rr 2  (43)

is the area circumvented by the circular orbit of the observer B (in the inertial

frame of reference).

The additional term Aw in Eqn. (42) is caused by the circular motion of the ob-

server A (previously resting with respect to the original inertial frame) and is some-

times called the Sagnac effect. Its origin is rather obvious geometrically (cf. Fig. 8).

In global positioning practice the circular motion of the observer A is due to the

rotation of the earth with respect to the ECI frame (which can be considered as an

inertial frame in special relativity). Very frequently the Sagnac effect is identified

in the literature with the expression for rA '- B in the limiting case when V ap-

proaches wr. Such a limiting expression can be obtained from either (42) or (41) by

substituting (37) in (42) or (38) in (41) and then taking the limit as V approaches

wr.The result is

iTA- fB ='Mu

We want to stress here the difference between the described above Sagnac

effect and the optical Sagnac effect mentioned frequently9 ,11 in the literature on

the relativity theory. In addition to the s!pecial relativistic Sagnac effect, in a

gravitational field one would encounter also a gravitational Sagnac effect having the

general relativistic nature, We are not going to describe it here in detail because

this effect is of a higher order than the spccial relativistic one.

29



tw

B _ B ,A

r r

Fig. 8. Spacetime diagram of the Sagnac effect. Shown on the left is the caue when observer
A is at rest and observer B is moving along a circle of radius r at a speed V. On the right
is the case when observer A is moving along the circle at a speed wr. One full rotation
(27r) of B with respect to A corresponds to rotation of B equal to 27r + wt with respect to
the inertial observer.
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VII. Relation between the Range Data and the Time Data in

a Schwarzschild Field.

We are going to consider now the relation between the range and time data

in a Schwarzschild field for the light (or radio) signal traveling between the ground

observer and the satellite, The placement of the ground observer is not restricted

anymore. He can be placed anywhere at the ground surface and may even be in

motion. The satellite orbital plane can be inclined with respect to the equatorial

pline and the orbit does not have to be circular, Actually, the analysis that we

are going to undertake can be applied to a pair of satellites or even to a pair of

spaceships which are accelerating while the ranging is being performed.

Mathematically the problem can be formulated as follows. First we introduce

the coordinates (x°, xI., 2, x3 )

X' = t, x1 = rsin cos¢, x2 = rsin sin¢0, x3 = rcos8 (44)

the same way as we did in section lII.

The Schwarzschild metric reexpressed in these coordinates is

ds2 =-g,vdxmdx' = - (1 - dx02 + dxkdxk
1 (45)

rM ( 2M® ) (xdx)

where k = 1,2,3, and the summation over repeating indices is assumed. It is

interesting to note here that the Schwarzschild radial coordinate 7' can be expressed

as

r 2 =X k k (46)

Up to second order we have

9AP = YAP + 7yP (47)

= diag(-,1, 1, 1,1) (48)
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Y7o0 2M (49)

r

Yak = 0 (50)

=2Mgxx = 2MO(r- 1 6,k - r,ik) (51)
wher bikiS tle Koneke delt an r3 = 2

92 r
where 61k is the I•.oniecker delta and ?',•k - 8z,-8zA

We want to stress that in the space of these coordinates (pictured as if they

were Cartesian coordinates) the geodesic lines and, particularly, the null geodesic

lines do not usually look like straight lines.

Let us suppose (cf. Fig. 9) that in this space 0 is the event of emitting the

light (or radio) signal by the ground observer, and S is the event of receiving the

signal by the satellite. The solid (curved) line OS represents the null geodesic world

line of the photon traveling from 0 to S. The vertical dashed lines represent the

integral lines of the timelike Killing vector field of the Schwarzschild metric passing

through the events 0 and S. In general

at 0 (AxkAxk)i (52)

If there was no gravitational field, i. e. if the spacetime was flat the world line of the

photon received at S would be the straight inclined dashed line O'S intersecting

the integral line of the timelike Killing vector field passing thro'igh 0 ac a point 0'

not coinciding with 0. Then we would have

(At)f = (AXkAxk)i (53)

The straight line segment 00' pictures the difference between At and (At)/, and

it. is this difference

At - (At)j, = At - (AxkAxk)i (54)
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I _____ 7

// 1 (AtX,

x

Fig. 9. An estimate of the difference between the general relativistic a~nd specia.1 relativistic
range-time relation. The special relativistic relation can be used, but it introduces an error
of the second order with respect to V r
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that we want to estimate.

Let us recall that thc line OS is a null geodesic. Its equations can be written

as
d2 r - dxw dxwdw.---i + r, •w dw= 0(55)

where r, are Kristoffel symbols and w is an affine parameter such that w = 0

at 0 and w = 1 at S. Calculations using the covariant tensor series expansion

(J. L. Synge's world function9 ) lead us to the equation (precise up to the second

order)

= Q (56)

where
1 1

Q =s-YwAx1'Ax - 2AxM A~x' f y,,dw - AxAi~x'A Jy,,,,udw (57)
0 0

Hence

At2 = A,,A•• - Q (58)

A = (AxkAxk) - Q(AxkAxky)- (50)

The last term in (59) is small, so that in calculation of Q we may substitute At =

(Axk~k)•. Eqn. (59) can be rewritten in form

At = (AxIAXk)i' [1- Q(A Axk)-1] (60)

or, introducing notation

F --Q(Ax - (01)

reduced to

At (AxkAxk)j[1 + F] (62)

The expression (61) can be evaluated but it is not an easy task. However the order

of magnitude of F can be estimated rather easily for the case AxkAxk _ I'2 which
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is the case in all GPS problems. Just by looking at Eqns. (62), (57), and (4g)-(51)

one can make an obvious conclusion

F (63)
r

This solves clearly the objectives (2) and (3) of section II. The standard GPS

range - thne - data relation takes form

At = (AX kxAk) (64)

The relation indeed can be interpreted globally in the region of curved Schwarzschild

spacetime where M®/r is small, provided that t is Schwarzschild time and the

coordinates xk are related to the Schwarzschild coordinates as in Eqns. (44). The

relation (64) is approximate. It is satisfied only up to the first order (with respect

to V M /r).

This result does not depend in any way on 4-velocities and accelerations of the

ground observer and the satellite, so that it remains true also for a. pair of satellites

or even for a pair of spaceshiips with arbitrary accelerations.

It is also clear that the procedure of initial synchronization described at the end

of section IV will work in the general case of the observer placement and an arbitrary

choice of the sitellite orbit. All that one needs to do is to relax the requirement

that the signal should be sent vertically (one can send it any way he wants), and to

use our new relation (64) instead of the range-time-data relation (22). In this way,

he will be able to perform the initial clock synchronization (setting the constant of

integration in the Eqn. (13) to zero) with an error of the first order. Since the error

does not accumulate in time this synchronization is quite sufficient for any practical

purpose of modern GPS.
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VIII. Noncircular Orbits in General Relativity.

In section IV we obtained the expression relating the time of the ground

observer clock and the satellite clock for the case of the satellite circular orbit

(Eqn. (13)). One can notice, however, that all the aniysis preceding the Eqn. (13)

does not use the assumption of a circular orbit. Eqn. (12) remains unchanged if we

relax this requirement. It is the procedure of integration of the Eqn. (12) leading

to the Eqn. (13) that uses the assumptions Rs = const and Vr2 onst (which

are equivalent to assuming the satellite orbit being circular).

Although the orbits of the GPS satellites are meant fo be circular in reality

they can never be perfectly circular. We want to kvow now what happens if the

satellite orbit is slightly noncircular.

In Newtonian mechanics the orbits slightly deviating from circular are elliptic.

The simplest way to analyze the satellite motion on such an elliptic orbit is to use

the Hamilton-Jacobi method'. The main results are as follows

(1) The orbit of the satellite is planar. Consequently, one can introduce spherical

coordinates (r, 0, 0) in such a way that

6 = const (65)

(2) The total energy of the satellite and its angular momentum are conserved and so

are the total energy per unit mass of the satellite i and its angular momentum

per unit mass L
_Me V2  (60)

r 2

= (67)

(3) The orbit of the satellite is elliptic and it is defined by the equation

= [2(i + M®/r- L2/2r2)]-' dr (68)
6 r2
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or, after integration,

SL 2/Mo (69)
1= + ecos(

where e is the eccentricity of the orbit

e = (1 + ]2 L) (70)

The semimajor axis of the orbit a is

rmax + rnin 21M/M MO) (4
a1= (2 ) (71)

The constant of integration in (68) hps beenk picked up in such a way that

the position of the closest approach (periastron) is achieved, when 0 = 0. The

saatellite returns to the periastron position at 0 = 2kar for any integer k.

(4) Time as correlated with position is given by

t = f [2(9 + Me/r- L2/2r2)]-1 dr (72)

To simplify the integration it is common practice to introduce a new parameter

u so tht

r = (12 - ecosu) = a(1 - cosu) (73)
(-21)3/2

The pararaeter u is the so-called "mean eccentric anomaly", or, otherwise,

Bessel's time parameter. Substitution of (73) into (72) and subsequent inte-

gration gives

A1 (- esinu) (74)t=(-2g)3/2

where the constant of integration is chomen so that at t = 0, u = 0.

Bessel's time parameter is related to the angle coordinate 0 as foliows

(1 - e2) j sinl
sin= u + cCos- (75)

37



cos • + ecos u = --- (70)
1 + CcosO

cos u - e (77)
1 - e cosu

(I - C2)j sinu (8
sin = -' '(78)

1 - COB U

Although u has the same period as , the difference between them is very

essential, apart from the case when e = 0 (circular orbit) which gives Ua = 0.

We will be interested later in the relation between u and 0 for e 0 1 when 0

and u are small. Then (74) yields (up to the first order)

U ;U (79)
1+e

which means that for small 0 the parameter u is of the same or higher order

of smallness as

u ,(80)

In general relativity the satellite motion for a noncircular orbit is more compli-

cated. In general, the motion is nonperiodic. The physical reason for the difference

stems from the fact that, in general relativity, the period of the radial motion does

not coincide with the period of the angular motion of the satellite. For the orbit of

small eccentricity the difference between the classical an relativistic motion can be

pictured as the periastron shift.

For a nearly circular orbit of the radius r0, the angle swept between two suc-

cessive periastrons is

A=2fr (0 6M®) (81)

or, up to the first order,

AO;:i 21r + 67rM ý(82)
ro
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i.e., the angle variable acquires an additional shift

6d( = 6 (83)
7.0

per one period of radial motion compared to the classic case (when 60 0).

As in classical mechanics a complete description of the satellite motion can be

produced using the Hamilton-Jacobi method. The main results can be presented

in the following way.

(1) The orbit of the satellite is planar, as in the case of classical mechanics, so that

the Schwarzschild coordinates (t, r, 0, 0) can be chose in such it way that

7r
const = - (84)2

(2) The total energy per unit mass E and the angular momentum per unit mass

L are conserved. E and and L are called the energy (per unit mass) and the

angular momentum (per unit mass) at infinity (for a Schwarzschild observer at

infinity). We want to note that the Eqn. (67) is not satisfied exactly in general

relativity but is still correct up to the second order.

(3) The orbit of the satellite is defined by the equation

L [t2 G - 2M./r)(1 + L2/r2 )] drrrS= r2 (85)

(4) Time, as correlated with the position of the satellite, is given by

t =f [k2 +-l- 22/r)( + /ra)] - dr (86)
(1 -2MV®/r)

It is obvious that to perform calculations using relations (85), (86) is much

harder than for the classical formulae (68), (72). This circumstance motivates us to

estimate first the difference in predictions from (85), (86) comipared to those from

(68), (72).
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The detailed analysis shows that the difference between them is of second order.

One of the ways to handle the situation is to modify the parameters. We will

consider the details only for the particular case that we will use in this report, i. e.

only for the Eqns. (72), (73). To keep these equation unchanged we modify the

argument u for u + 6u where 6u ,- , i.e.r

r = a[1 - r cos(!, - Su)] (87)

-t = u + u - e sin(u + 6u) (88)

These equations coincide with the classical equations only up to the first order.

40



IX. The Rates of Clocks for Noncircular Orbits.

As we mentioned above the differential relations (9)-(12) of section IV are

correct for an arbitrary orbit. It is only the integrated relation (13) that uses the

assumption of the orbit being circular. Using the results of section VII we are going

to modify the results of section IV to include the case of a slightly noncircular orbit.

Let us rewrite Eqn. (9) in the form
(dr, -[1 M® V2 1

(dr)t = [1 ---- _ L dt (89)1 r 2 1t(9

We have dropped the index S everywhere because we are discussing now only the

satellite motion. We will restore it whenever it becomes necessary.

Let us modify now Eqn. (89) to the form more suitable for integrating in the

case of noncircular orbits, First, we use the fact that the Newtonian equation of

the total energy conservation per unit mass is also true in general relativity up to

the second order
Mg V2  M®--- + =- = --- = const (90)r 2 2a

This allows us to eliminate V2 /2 from Eqn. (89)

(dr)f [1 -2MO1 -l 1)]dt (91)

Now we can use Eqn. (87), from which it follows that up to the first order

1 = 1 1 (92
r a 1 - ecosu

Substitution of (92) in (91) produces a (correct up to second order) expression

(dr)= 1 M2a 2Mae cos )u dt (93)

where the Bessel's time parameter u is a function of t. Integrating Eqn. (93) we

come up with

= t 3M®t 2M®e cosu dt+C (94)
2 a all - ecosu
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To evaluate the term
Moe f U dt (95)

a J 1- ecosu

we use the fact that differentiation of Eqn. (88) yields, up to the first order

a31/2
dt= a---(1 -e conu)du (96)

MI4/2

Thus, up to second order

2M ~e 1 - o dt =:2Mýade/cos udu=2Mkaie(sinu-sinuo) (97)

so that, finally, up to the second order, we have

'rs = t- t- 2MW aesinu + C (98)
2 a

For the ground observer the expression for ro does not change

t - --- t - V t + c) (99)

0 2

The initial synchronization procedure described at the end of section IV should

be modified as follows. First, we define the global Schwarzschild coordinate time t

so that t = 0 when ro = 0, This defines Co = 0, so that Eqn. (99) turns into

I _ (1 M V_ 2 t (100)

Inverting it we obtain
t ( + _ - .Z+ro (101)

Ro 2

Substitution of (101) into (98) produces the relation between rS and To

(MO +V2ý 3 MO

\l+Ro+ 2 2 a (102)

--) d i _, ) rC] + CS

To make rs = 0 at t = 0, the same procedure as the one described at the end

of section IV should be used. But now, taking into account the results of section
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VII, the direction of the synchronizing signal does not need to be restricted to the

radial one anymore. Such a procedure will allow us to define the constant CS. As

it has been shown in section VII, we can ase the approximation of the expression

for the retardation

At - - I (103)

Let us suppose now that the synchronizing sigual was sent by the ground ob-

server at ro = o,. To achieve "rs = 0 at 1 = 0 the satellite clock should be set

to

( 2 aO 2 o A

I2~~sn [(1 M~V~) ] (104)

The formulae (98)-(104) provide a complete account of the relation between

the rates of clocks of an observer placed at arbitrp.ry latitude on the ground surface

and a satellite in a noncircular orbit (in general, with the plane of its orbit inclined

with respect to the equatorial plane), and of the procedure of initial synchronization

of the clocks 12,

The formulae contain second order non-accumulating error in the constant of

integration (initial synchronization) and fourth order accumulating with time error,
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X. Summary of Relativistic Corrections and the Residual Errors

in Global Positioning.

Relativistic effects are described (up to the second order) in the following way

(cf, Sect. IV, IX):

(a) The differential relation between the proper time of a moving clock and the

Schwarzschild coordinate time is

dr = -[ MO VY. dt (105)Sr 2

t - Schwarzschild time;

r - proper time of a moving clock;

r - Schwarzschild radial coordinate of the clock;

V - clock velocity with respect to the Schwarzschild frame;

-. - earth mass.

(2) Integrated relations are different for the satellite and for the ground observer.

(a) For the satellite

=t 3 M + CsM (10s)-2 a -t ,,. + C
SIII IVIIV

a - ixmajor semniaxis of the satellite orbit (a f Rs);

e - satellite orbit eccentricity;

u - Bessel's time parameter.

(b) For the ground observer

AL® V2
r-t--o- V2-t- t+CO (107)

Ro - radius of the earth at the observer location;

VC -- observer velocity due to the earth rotation,
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The magnitudes of the relativistic corrections and the residual errors is deter-

mined by the value of the clock's speed V with respect to the Schwarzschild frame

and the value of the gravitational potential M®/r. In all GPS applications

V < it 1, and V2,M. (107)
r r

We say (cf. Sect. II) that a term in an equation is of the first order of magnitude

if it is of the same order as V - VIM/S/r, of the second order if it is of the same

order as V2 , M®/r, and so on.

In the system of units commonly accepted in relativity masses and distances

are measured in seconds. The values of the parameters relevant to our estimates

are as follows

M& = 1.479 x 1.0-" ,c c 0.005

Ro = 2.125 X 10-2 sec, a - Rs = 8.5 X 10-2 sec (109)

In the formula for the satellite, terms II and III are the second order relativistic

corrections that have been already implemented in the GPS. Term II has a value

0.261 x 10- t sec. It accumulates with time and exceeds 1 nanosecond after -Z

3.83 sec. Term III is due to the ellipticity of the satellite orbit. It is periodic,

nonaccumulating, and bounded by 1.21 x 10-8 sec = 12.1 nsec. The term needs to

be taken into account if 1 nsec precision is required or if the satellite orbits have

larger eccentricities than our value (0.005).

The errors of relativistic origin arise due to the following reasons

(a) Errors in the constants of integration are caused by neglecting the general

relativistic effect of the light rays bending (the relation between the time data

and the rai le data used currently in the GPS is special relativistic). The

synchronization procedure allows to make all the constants of integration equal

to zero with an error

6C 8 w 2M,s in E-- g 2M®1 n4 (110)
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if the synchronization is performed when the satellite is right over the ground

observer, and

6Cs ,• 2M1 In(4+\'/h) (111)

if the satellite is on the horizon. In any case the error is •- 0.08 nsec and does

not accumulate.

(b) Errors are caused by neglecting the higher order terms in relativistic correc-

tions. In case of the currently accepted model (Schwarzschild field) for the

GPS, the errors are of the fourth order. They can be estimated via multiplying

the value of the corresponding term by the factor MO/Rs, which gives for term

II 0,454 x 1 0 " t sec.

The error accumulates wth time but it takes over 100 years to exceed 1 nsec

treshold. The error in term III is periodic, nonaccumulating and boundcd by

0.21 x 10-17 sec.

(c) Errors arise due to the light bending. If the GPS is used for measuring the ma-

jor semiaxis of the orbit then the value of the major semiaxis is of the same or-

der of magnitude as the error in Lhe constant of integration (5,916 x 10-sec)

which leads to the error in term II, equal to

3 'we (6 )t , 1.814 x 10 t112)

that accumulates with time. However, it takes over 100 years for it to reach

I nsec.

The error in term III, equal to

2Mý eb(ai) sinu (11.3)

is periodic, nonaccumulating, and bounded by 1.104 x 10"-" sec.

For the sake of convenience we sumnarize all the information concerning the

relativistic corrections and the residual relativistic errors in the Table (cf, Table 1).

Other errors occur in global positioning due to the effects of nonrelativistic

nature, such as imperfections in the clock technology (especially for space qualified
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-3M- -2Mnafesinu + Cs
I I- IV

Term II III IV

Analytical -WMaieeinu CS
Expression

Value 0.261 x 1"•Ot sec 12.). nsec 0

Does it Yes No No
accumulate?

Error due to Value x Value x Value x
neglecting
the higher ,454 x 10-1t see .21 x 1017 sec 0

order terms

Error due to Me6 (1)t2M )e6(ati)sinu 2MAlIn(41 + v/'i)
neglecting
the light 1.814 x 10- 1 t• sec 1.104 x 10"-1 see 0.08 nasc

ray bending

Does the error Yes No No
accumulate?

Table 1, Rltatlvlstlc effects in global positioning.
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clocks), difficulties in the separation of the satellite position (ephemeris) errors from

the clock errors, the atmospheric effect on the signals propagation, and so on. We

give here a brief (and by no means complete) discussion of these errors and compare

them with relativistic errors10 .

The separation of satellite position or ephemeris errors from clock error is an

inheritent problem in a purely passive monitor system. Such a high precision separa-

tion is vital for autonomous operation in the event of interruption of communication

with the Master Control Stations, or of use of a more stable clock. The read-out

resolution in the current system ("Kalman Filter") does not satisfy the use of more

stable clocks (they cannot be read with a precision commensurate with their intrin-

sic capability). When the satellite ephemeris is determined asing the pseudorange

measurements methods they are monitored whenever they are above a fixed chosen

elevation angle at the monitor station. Real time ephemeris accuracy is believed

to be • 2 m radial, ; 7 m intrack, -, 5 tn crosstrack. It can be improved by a

factor of 2 with post-fitting. Satellite clock error is of the order of the radial error

(• 10 n.sec).

The satellite ephemeris error can be significantly reduced and separated from

the clock error if one employs methods to determine the GPS satellite orbits in-

dependent from the use of pseudorange measurements. There are several such

methods, for example

(a) Radar tracking (not sensitive enough).

(b) Laser ranging (accuracy of 1 cm (0,03 nsec) should be routine soon, the

current L-band ranging accuracy is 30 cm (0.1 nsec)

Any attempt to operate a global navigation and the time transfer system at

or below the 1 nsec level will operationally require the clear separation of satellite

position errors from clock errors.
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The methods under consideration are:

(a) Use of existing GPS signals.

1. Improved use of pseudhorangc ineasurements

2. Doppler tracking of the carrier phase

3. Carrier phase ranging 'by resolving ambiguities

4. Very long baseline interferometry

(b) Two-way ranging

1. Satellite transponder

2, Laser ranging

(possibly with additional on-board event timer for clock read-out)

(c) Ranging between GPS satellites (crosslink razging)

The concept of crosslink ranging was originally developed to facilitate eventual

system aatonoriy,

The present syttem depends on daily update of satellite ephemeris and clock

parameters from the master control station, Without it the clock phase error would

grow ; 10 nscc/day, the satellite ephemeris errors also would grow (intrack -

2 km in 100 days, 10km in 200 days, radial and crosstrack would experience daily

oscillations with growing amplitude: 200 m for radial, and 70 m for crosstrack after

200 days)

Crosslink ranging would allow in principle to maintain original navigation con-

sistency among GPS users with the satellites left unattended, although accuracy

with respect to earth coordinates may be seriously degraded.

The effects of the propagation of the signal tbrough the earth's atmosphere are

of two kinds:

(a) Systematic time and frequency shifts

(b) Random effects which can be represented statistically.

The random effect results from fluctuations in signal propagation through the

earth's troposphere, This noise degrades the cesium performance by a factor of 10,

49



and that of hydrogen masers by a factor of 100.

The long-term propagation effects owing to barometric pressure variitions im-

pose a li,.ait I.f/f z 10-14 for time intervals of one day. Tropospheric noise and

systematics are independent of the radio signal frequency, except for molecular ab-

sorption bands (5 mm and 2.5 mm for oxygen, and 1.35 cm and 1.6 mm for water

vapor). The tropospheric effects limit the accuracy in all electromagnetic one-way

propagation systems.

Ionospheric propagation effects are highiy affected by the fiecl'ency of the

signals; both the path delay and the path itself are affected.

Both the syst :natic and the random noise depend of the number of electrons

per unit area over the distance of the ray path (columnar electron density), which

varies greatly with the level of solar activity and the tin±v of the day. This quantity

is very unpredictable.

Sine the ionosphere's columnar electron density affects the speed of light iai

a weli understood way that depends on frequency, one can measure the density by

simultaneously receiving signals transmitted on dliTerent frequencies.

For troposphere one might try to introduce corrections using barometric pres-

sure and humidity data taken at the ground station, and vapor radiometer data

taken in the line of sight to the spacec:aft.

Thus far the best technique for subnanosecond time transfer, or for frequency

comparisons at or below 1014 level, is to measure the round trip delay, divide the

result by two, and use this value to correct the data for spaceborne clock.

The final conclusion is that the technology of the foreseeable future provides

all the means for precise time transfer and global positioning on the level of 1 ns.

Relativistic effects of the second order play anl important role in the procedures of

global positioning. They are treated correctly in the current GPS as far as pairwise

time transfer (master clock - satellite clock, satellite clock - satellite clock, etc.) is

concerned.
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XI. Sy.-cetime Common Grid and the Covarlant Formulation

of the Global Positioning Problems.

As it has been stated in the previous section, proper care can be taken of the

relativistic corrections in global time transfer and global positionil g. Our estimate

of errors, both accunulating and nonaccuinulating with time, shows that they can

be kept within 1 na for many years without any need of resynch.onization as

far as relativistic effects are concerned. Rapid progress in the clocks technology,

study of the P tmosphferic phenomena influencing the travel time of the time transfer

and positioning signals, and improvements in aerospace technology make global

positioning at the level of 1 ns the matter of a quite foreseeable future.

One can imagine that the improvements in clock technology, particularly the

development of precise space qualified clocks, will make unnecessary the presence

of the ground placed master clock in the system, so important at present. Or,

the system might contain a whole class of preferred clocks (part of them in space)

synchronized with each other via the ground - satellite and satellite - satellite

cross - linking. Any such development would turn the Global Positioning System

inLo a system capable of upkeeping itself and functioning quite independently for

prolonged intervals of time. Computer simulations1" indicate that a system based

on cross - li.ked satellites indeed can be kept self consistent for long time. However,

ýhe ctability of such a system in performing the task of global positioning on the

ground surface or in measuring the location of space vehicles with respect to the

ground surface deteriorates rapidly due to iriegularities of the earth's rotation with

respect to the Schwarzschild frame. The hitter is virtually unaffected by those

irregularities. To make such an autonomous system effective in global positioning

while maintaining its independence a study of the earth's rotation irregularities

should be undertaken. The US Air Force involvement in the "LAGEOS-3" project

is the first and the most important step in this direction. Variations in the earth's



rotation do not influence in any essential way the clocks synchronization. It is not

a resynchronization which is required because of the earth's rotation irregularities

but rather recoordinatization.

To keep such a big Global Positioning System consistent and efficient in per-

forming its tasks there is a need for an adequate mathematical model that allows

to track the positions and maintain timekeeping of all CPS satellites and ground

stations (no matter whether the system is based on one master clock, a whole class

of preferred clocks, or treats all the clocks on equal footing). It is our opinion that

such a model should be based on the guneral relativistic approach.

The idea of such a relativistically based model - the Spacetime Common Grid

- suggested by Capt Warner A. Miller seems to be the most appropriate one,

It treats the CPS system as a construction consisting of the clocks and null rays

(propagating light or radio signals) in 4-dimeagional curved spacetime. The rise of

the Spacetime Common Grid will exclude in the future any mistakes in treatment

and upkeeping of the GPS. At the same time it is maximally flexible, so that it

stimulates incorporation in the system of new ideas and technological advances in

the easiest possible way.

Mathematically, the Spacetime Common Grid model pictures clocks as time-

like world lines in 4-dimensional spacetime that are geodesic for the satellite clocks

and curved for the ground stations clocks. The time transfer in the Spacetime

Common Grid is pictured as a reparametrization of these timelike world lines con-

ducted in a consistent fashion. The possibility of such a consistent procedure of

parametrization (synchronization) is based on the 4-dimensional symmetries of the

earth's gravitational field (cf. Section IV). The world lines of the clocks are marked

by the events of transmitting signals containing information of the clock readings

as well as their positions with respect to a global coordinate system (for instance,

the Schwarzschild coordinate syEtem or very popular in astronomical observation

isotropic coordinates). An event on the world line of a clock is, thereby, identified
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as the intersection of the timelike world line of a clock and a null geodesic.

The positioning procedure is reduced in this picture to finding the time and

coor Jlinate data of an event on the world line of a user from the fact that this event

can be considered as the intersection of several null geodesics connecting this event

with some marked events on the world lines of the GPS clocks (cf. Fig. 10).

The Spacetime Common Grid model is very simple and clear conceptually,

but, at the same time, it is powerful and flexible enough to be equally capable of

describing the systems with complete "democracy" of clocks, the systems containing

a preferred class of clocks, or, the present day system with one master clock.

Ar we have mentioned above, the Spacetime Common Grid model makes an

assumption that the symmetries of the gravitational field are such that the region of

its activit~es in spacetime can be covered by one coordinate system (xa, xI, X2 , x3 )

such that the coordinate x° is timelike (i. e,, vectors tangent tV the lines determined

by the equations xi = const, x2 - const, x3 = const, are timelike) whereas all three

remaining coordinates are spacelike. In this case, the time coordinate t = x0 pro-

vides a universal time ordering of all events and assures that the time transfer

between the GPS clocks can be organized in a coordinated way provided that the

motion of these clocks with respect to the global coordinute system is known. in

the CPS practice the global coordinate system is determined by the fact that the

earth's gravitational field is, in a first approximation, static and centrally symmet-

ric. A typical example of such a system is the Schwarzschild coordinate system

used throughout this report and prevalent in investigations on theoretical problems

concerning static spherically symmetric fields. Another example is the isotropic

coordinate system " frequently used in describing astronomical and cosmological

observations. In practice we also use extensively the fact that the earth's gravita-

tional field is weak. This allows us to use approximations instead of performing

exact calculations of the relativistic effects in GPS. The approximate equations can

posses additional symmetries and, thereby, e:atc nd further the choice of an appro-
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WORLD LINE
OF A USER

WORLD LINE.. WORLD LINE
OF A GPS CLOCK OF A GPS CLOCK

B

A

Fig. 10. Spacetime diagram of positioning an event P on the world line of a user according
to the Spacetime Common Grid picture. An event P on the world line of the user isrepresented as the intersection of the null geodesic. AP and BP connecting the event Pto tht: marked evcnts A and B on the world lines of the GPS clocki.
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priate global coordinate systems (which is indeed the case, as one can see when

considering the PPN formalisms).

The first problem is to describe the motion of the GPS clocks with respect to

the global coordinate system, and the clock rates compared to the global coordinate

time. The issue of the clock rates is discussed in sections IV - X of this report in

a rather detailed fashion. There is very little that can be added to this description

except for the technical details. As about the description of the clocks motion, the

issue is more involved due to the importance of nongravitational effects in the case

of the satellite motion10 , and the irregularities of the earth's rotation, tidal effects,

etc., in the case of ground stations. A complete account of the problems involved

is definitely beyond the scope of this report. We want only to note here that the

problem is very multifaceted, involves a large number of factors and should be taken

very seriously in view of the extreme sensitivity of the global positioning precision

to it.

The second problem is positioning of the user with respect to global coordinates

at a moment of time chosen by this user by means of the signals from the GPS clocks

(the so-called pseudoranging procedure). Theoretically, the problem can be reduced

to solving of geodesic triangles in curved spacetime. There are several techniques

for that. We are going to discuss two of them. However, in practice the problem is

complicated by atmospheric effects on propagation of radio signals1 0.

Upon the completion of the user positioning with respect to global coordinates,

the corrections taking into account irregularities of the earth rotation should be

made if one wishes to position the user with respect to ground placed objects.

The Spacetime Common Grid is an essentially general relativistic model of the

Global Positioning System. As we have demonstrated above, the Spacetime Com-

mon Grid model expresses all the steps of global positioning in terms of geometric

concepts in the curved spacetime of general relativity. The idea of the Spacetime

Common Grid supplies, thereby, a relativistic covariant formulation of the global
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positioning problems. It is very important to keep clear geometric interpretation all

the way from the formulation of the problems to the stage when their final solutions

are obtained. It happened to often in the course of the short history of GPS that

the geometric interpretation was lost or ignored and errors were made that could

be avoided.

A way to achieve a total geometric clarity throughout all the OPS is to choose

carefully computational techniques used to obtain solutions. We want to mention

here two of these techniques.

(1) The formalism of the world function developed by J. L. Synge9" 4 '1 , who

turned it in a geometrically transparent, extremely powerful, and versatikl

computational method ideally suitable for solving 4-dimensional chrono-

geometric problems (the GPS problems represent one particular class of

such problems).

(2) The PPN formalism developed primarily for comparison and testing differ-

ent gravitation theories and subsequently used for describing the gravita-

tional experiments within the solar system (for example, the development

of the ideas related to the "LAGEOS-3" experiment was performed en-

tirely in the language of the PPN formalism.

Although the world function approach and the PPN formalism are very similar

in some respects, they differ considerably in many other ways. Both of them can

be characterized as series expansions techniques.

The world function formalism develops a sophisticated technique for an ap-

proximate calculations of a function of two points P 1, P2 in spacetime. The value

of this world function O(P 1 , P2) is equal to

1 2
(PI, P2)---!Lp2 (114)

where Lp/p 2 is the distance between points P1 and P2 in spacetime (in GPS the

value of this function is frequently related t~o the readings of the clocks), The deriva-
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tives of the world function with respect to the positions of points P1 and P 2 provide

a vector quantity presenting an extension for curved spacetime of the concept of

radius vector, so useful in standard vector analysis. It also turns out that in the

particular case when PI and P2 lie on a null geodesic, the scalar product of the

derivative of the fl(P 1 , P2 ) at point, say P 2 and the 4-velocity of an observer at

the point P2 is proportional to the frequency of the light signal (propagation of

which is depicted by the null geodesic P1 P2 ) as measured by this observer. This

provides a description of the general relativistic Doppler effect in terms of the world

function. The formalism of the world function defines, further, the whole sequence

of the higher covariant derivatives and endows them with a transparent physical

interpretation. After that, the world function formalism develops the method for

approximating the world function and its covariant derivatives by covariant Taylor

series expansions (the coefficients are determined in terms of covariant derivatives

rather than partial derivatives) for the cases when the spacetime curvature is small,

or the points PI and P 2 are placed close to earh other, or both. Approximations can

be performed in any order and all approximate expressions are manifestly generally

covariant. The covariance of the theory is not violated when a local observer is

introduced because it is described in the theory by its 4-vector of velociby, acceler-

ation, etc., and by invariant parameters such as three cuirvatures of the observer's

world line, It is only when an attempt of globalization of observations is under-

taken that the covariance gets broken. The geometric interpretation of the results,

however,does not get lost even then. The reason for this is that in generic cases

globalization of the observations in general relativity is impossible due to the fun-

damental nonintegrability. It is only in cases when some additional symmetries are

imposed on spacetime that globalization becomes possible. These additional sym-

metries can be usually described in geometric terms as a special kind of vector or

tensor fields - Killing fields, The geometry of global observations includes then the

geometry of these Killing fields. Special coordinate systems can be formed as con-
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structions including these fields and the usual geometric devices such as geodesics,

etc. In practice it is not always necessary to follow this route. It is important, how-

ever, that in the formalism of the world function, one always can recover the whole

picture of globalized observations (such as global positioning) entirely in terms of

the geometry of geodesics and the geometry of Killing fields related to the spacetime

symmetries.

We cannot go into more detail concerning the use of the world function formal-

ism here. A study of the world function formalism applications to GPS is a subject

of a separate, although related, research which is under way now18 .

The PPN formalism (Parametrized Post.-Newtonian formalism) from the very

beginning is heavily based on the assumption (which is very good for all the phe-

nomena in our solar system) of weakness of gravitational field. It makes use of this

assumption to obtain a "second" approximation of the general relativistic equations

(considering as the first approximation the standard Newtonian theory). The for-

malism was developed by the efforts of Eddington19 , Robertson 20 , Schiff"', and, in

modern form, of Will and Nordtvudt 22. The PPN formalism considers the general

relativistic description as an extension of the Newtonian picture, Because of that

the assumptions about the gravitational field weakness and the parameters of the

gravitational field sources are furmulated in Newtonian terms.

Mo'e exactly, it is assumed that the system under consideration has weak

gravity

ItI = INewtonian potentiall < 1, (115)

the matter that generates this gravitational field moves slowly

V2 < 1, (116)

and has small strceis and internal energy

. --- (stress per unit baryon "mass density") f 14I < 1 (117)
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I internal energy density pern (P - P0) unit baryon "mass density" 4 ) 1 1 (118)

Th,, idea of the PPN forraalism is to analy.:e tihe system by a simultaiieous expansion

in the small parameters 101, v2, [Tjk[/#p, and 11. Such a "weak-field, slow-motion

ex.pansion" gives: (1) fl t empty spacetime in "zero order"; (2) the Newtonian treat-

ment of the system in "first order"; and (3) Post-Newtonian corrections in "second

order". Such a PPN expansion can be developed not only for general relativity

but for almost any metric gravitation theory. Moreover, all the expansions can be

given a universal expression via introduction of parameters taking different values

for different theories', We are going to consider here only the PPN approximation

of general relativity.

The PPN formalism assumes that the analyzed system is covered with assumes

that the analyzed system is covered with coordinates (t, xj) = (t, xl) that are as

nearly globally Lorentz as possible

90 -" nap+y70; 17civjI1I4'1 (119

In GPS problems

1 m (120)
r

The velocity of the coordinate system (i. c. the 4-velocity of its spaial origin) is so

chosen that the system as a whole is approximately at rest in these cuordinates.

For any gravitationully bound system (which is the case with GPS) the Newto-

nian approximation imposes limits on the values of various dimensionless physical

quantities
C2 =maxiniurn value of Newtonian potential U

(121)

>values anywhere of U, v2, ITiI/pO,.

where

V= p°(zi) d 3:r (122)

Moreover, changes of all quantities at fixed xj are due primarily to the motion of

the matter. As a result, time derivatives are small by O(e) compared to space
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derivatives
OA/Oat IvjI< e for any quantity A (123)

Conditions (121) suggest to expaad metric coefficients in powers in the small pa-

rameter e treating U, v2 , ITjkL/po, and fI as though they were all of 0(e2) and

treating time derivatives as though they are 0(c) smaller than space derivatives,

In such "Post.-Newtonian" expansion terms odd in e (for instance, such a,,

J (X',vt)0 d' (124)ix - X'1

who's total number of v's and 0/0t's is odd) change sign under tine reversal,

whereas terms even in c do not.

Time reversal also changes the sign of go,,, but leaves goo and gij unchanged,

Therefore, goj must contain only terms odd in c; whezeas goo and gjj must contain

only even terms,

The form of expansion through Newtonian order is obtained when one denmands
that tgoo 2 -1 +- 2U + [terms _ 4]

goj= [terms < 0] (125)

gij-- 6j + [terms < 62]

The stated limits in the higher order corrections are dictated by demanding that

the space components of the geodesic equation agree with the Newtonian equation

of motion
, dx" daO Y dx" dx#

dt2 dr 2 = dr dr "A' "di dt

= -rv - - jvkvI (126)

= U,1 + terms of order Jgo0kj; gkl•j I

One would get wrong Newtonian limit if g0k were O(e) or greater, and if gki. - bkj

where 0(1) or greater.

The above pattern continues to all orders in the expansion, i, e. ggu always goes

hand in hand with egukc and 2gjk.. We are not going to write down the expression
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for post-Newtonian corrections in metric coefficients. They can be found in the

standard literature on the subject. We want only to note that for general relativity

the PPN formalism is invariant under Lorentz transformations of the PPN coordi-

nates (combined with some infinitesimal coordinate transformations introduced to

keep the expressions for metric coefficients in their simplest form).

The PPN formalism makes the whole theory to look more like a Newtonian

theory with rather complicated corrections. It introduces globalization of measure-

ments simultaneously with series expansion. The relation of globalization to the

spacetime symmetries becomes rather remote, and the geometric interpretations

frequently become not so obvious, although they can be recovered.

The advantages of the PPN formalism are that the formalism is very well

developed and, consequently, is a very powerful calculational tool for the conditions

it was developed originally, i. e. for gravitationally bound systems with weak gravity,

slowly moving sources and succeptible to globalization (its advantages are eapecially

obvious in cases where the minor deviations from symmetries or nongravitational

corrections are involved). However, the PPN formalism, as it could be seen from

our brief description does much worse than the world function formalism in carrying

the spirit of the idea of the Spacetime Common Grid,
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XII. Recommendations.

a. The general relativistic analysis of the Doppler shift, and the global syuchroniza-

tion problems in the Schwarzschild field demonstrates clearly the following impor-

tant features:

(1) The only experimentally measured parameters are the frequencies and the read-

ings of the ground observer clocks and the satellite clocks (proper time);

(2) These parameters are determined at the events (points) of 4-dimensional space-

time, and not at points of the 3-dimensional proper space of a reference frame,

Anything else depends on the point of view and the suggested synchronization

scheme. It is a matter of interpretation and should be treated as such;

(3) For the Schwarzschild model of the earth's gravitational field, more than one

global synchronization scheme, different in the degree of complexity, can be

suggested. The synchrnnization scheme of section IV is much simpler than

the one based on the Doppler shift in section III. This simplicity is achieved

by the maximal utilization of the Schwarzschild metric symmetries and by the

elimination of the terms in the Doppler shift caused by time delay. The scheme

is the result of careful analysis of the physical origin of each term in the Doppler

shift expression;

(4) Not every interpretation leads to a global synchronization scheme. For in-

stance, an attempt to interpret all the observations in the frame of reference

of the ground observer' for the purpose of global syncl-uiuization is wrong

(cf, section V). The world line of the ground observer is curved in such a way

that the proper spaces of its frame, corresponding to different moments of his

proper time, intersect each other, and consequently cannot be used for global

synchronization, even in the special relativistic limit. It is recommended to

formulate the problems in four dimensions to avoid inistakes of this kind. In

relativity only events are real, and not 3-dimensional positions;
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(5) The analysis of the relativistic corrections in the ranging procedure performed

in this report shows that the relativistic corrections to the rates of clocks used in

modern GPS lead to the fourth order errors in ranging accumulating with time

and that the commonly used procedure of initial synchronization (determining

the constants of integration) causes an error of second order that does not accu-

mulate, The standard special relativistic time - to - range conversion formula

also produces the second order error. This estimate has been completed for the

first time in the present report. It implies that the relativistic contribution to

the GPS ranging errors can be kept within few centimeters (1-10 cm) for many

years without the resynchronization of the GPS satellite clocks, The ana±lysis

was done for an arbitrary latitude of the ground observer and a non-circular

orbit of the satellite with an arbitrary orbital plane inclination;

(6) The problem of cross - linking based on the satellite - to - satellite ranging can

be solved using the techniques of the sections IV-VIII of the present report,

The problem is not any harder (in any respect) than the observer - satellite

problem,

(7) It should be noted that by now basic relativistic effects involved in synchro-

nization of a pair of clocks or any single piocedure of positioning are rather well

understood"-','"3 and properly incorporated in the GPS operations, However

a development of a global relativistic mathematical model of functioning the

GPS as a whole is a matter of the future, The idea of Spacetime Common Grid

is a first step in this direction.

(8) The idea of the satellite-based Spacetime Common Grid provides a firm ground

for a general relativistic covariant formulation of all the GPS problems, local

as well as global, Mathematical description of the Spacetime Common Grid,

as we have shown in section XI of this report is based on a combination of

the geometry of timelike curves and will geodesics plus the geometry of Killing

fields expressing the symmetries of 4-dimensional spacetime considered in the
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GPS problems.

It is recommended that the use of the mathematical formulation of the Space-

time Cominoi, Grid idea be used on everyday basis in formulating and solving

the GPS probUems. Reformulation of the GPS problems in the language of the

Spacetime Common Grid will eliminate in the future misunderstanAhags related to

implementing relativistic corrections in the current GPS, as well as in all its pussible

future modifications. The development of mathematical techniques adequate for the

Spacetime Common Grid description of GPS, procndures is necessary. Our compar-

ison of the world function formalism versus the PPN formalism indicates that the

world function formalism agrees better with the basic ideas of the Spacetime Com-

mon Grid. However, the very well developed PPN formalism is very powerful in the

problems arising due to slight violations of spacetime symmetries. It is also very

responsive with respect to implementing nongravitational corrections of all kinds.

This feature is very important in the GPS practice. The world function forrrmnl•

might show to be as powerful in this respect as as the PPN formalism, bu. 4', is

unknoawr at this time. It is recommended to investigate this question. A successful

outcome of this research could provide a complete theory of the Spacetime Common

Grid.

We want to stress that development of the Spacetime Common Grid theory as

the foundation GPS operations will not merely provide a new computational and

interpretatiunal capabilities. It will put the whole issue on a different, higher level.
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